
1

Armstrong State University
Engineering Studies

MATLAB Marina – Cell Arrays Primer

Prerequisites
The Cell Arrays Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic
operations, built in functions, scripts, variables, arrays, logic expressions, conditional structures,
iteration, functions, debugging, and characters and strings. Material on these topics is covered
in the MATLAB Marina Introduction to MATLAB module, MATLAB Marina Variables module,
MATLAB Marina Arrays module, MATLAB Marina Logic Expressions module, MATLAB Marina
Conditional Structures module, MATLAB Marina Iteration module, MATLAB Marina Functions
module, MATLAB Marina Debugging module, and MATLAB Marina Character and Strings
module.

Learning Objectives
1. Be able to write MATLAB functions and programs that create cell arrays.
2. Be able to extract the containers and the contents of the containers (data) from cell arrays

for use by MATLAB functions and programs.
3. Be able to store data generated by MATLAB functions and programs in cell arrays.

Terms
cell, cell array, container

MATLAB Functions, Keywords, and Operators
cell, (), { }

Cells and Cell Arrays
A MATLAB cell is a container that can hold data of any type. Cell arrays are arrays of containers.
Cell arrays differ from "regular" arrays in that they can hold data of different types (arrays and
vectors hold data of the same data type typically numbers). Cell arrays can be thought of as a
collection of containers: each element of the cell array is a container that holds data and the
data in each container does not have to be of the same data type or the same size.

MATLAB cell arrays are primarily used for file input/output. Cell arrays can also be used to
organize collections of data of different types but structure arrays (covered in a later module)
provide a better way of organizing collections of data of different types than cell arrays.

Creating Cell Arrays
Cell arrays can be created by:
• Entering the values directly with row elements separated by commas and elements in

columns separated by semicolons all enclosed by braces
• Assigning an individual value to a variable indexed using braces
• Assigning a cell container to a variable indexed using parentheses

2

• Concatenating cell containers.
• Empty cell arrays can be created using the MATLAB function cell.

Examples of creating a one by four cell array containing a number, a character, a string, and an
array of numbers are shown in Figures 1a – 1c.

Figure 1d shows examples of creating empty cell arrays using the cell function. The MATLAB
function cell takes one to three arguments and creates a cell array of the size specified with
empty matrices for each cell. If one argument is given, a square 2-D cell array with that many
rows and columns is created.

>> ca1 = {1, 'a', 'abcde', [1 2 3]}
ca1 = [1] 'a' 'abcde' [1x3 double]

Figure 1a, Cell Array Creation using Direct Entry

>> ca2{1} = 5;
>> ca2{2} = 3;
>> ca2{3} = [1 2 3 4];
>> ca2
ca2 = [5] [3] [1x4 double]

Figure 1b, Cell Array Creation from Values

>> ca3(1) = {'abc'}
ca3 = 'abc'
>> ca3(3) = {[1 2]}
ca3 = 'abc' [] [1x2 double]
>> ca3(2) = {5}
ca3 = 'abc' [5] [1x2 double]

Figure 1c, Cell Array Creation from Containers

>> rowCellArray = cell(1,7)
rowCellArray = [] [] [] [] [] [] []
>> twoDCellArray = cell(4,3)
twoDCellArray =
 [] [] []
 [] [] []
 [] [] []
 [] [] []

Figure 1d, Empty Cell Arrays

3

The elements of a cell arrays can be cells or cell arrays (cell array of cell arrays). Figure 1e shows
an example of a cell array containing two cells and a cell array. Generally, one should try to
keep the cell depth at one or two, otherwise the organization becomes confusing and
extracting the contents of the buried cells can be difficult.

Organizing Data using Cell Arrays
The MATLAB program of Figure 2a and display of the resulting cell arrays in Figure 2b illustrate
the flexibility of data organization achievable with cell arrays. The same data is stored in both
cell arrays but with difference organization.

In the second cell array, groceryData2, each container is another cell array of two items. To
extract the data in the second cell array, first the 1 by 2 container must be extracted and then
the data in the 1 by 2 container can be extracted.

The MATLAB program of Figure 3a shows how similar cell arrays as those created in the
program of Figure 2a could be created from data read from a user. Figure 3b shows a sample
run of the program of Figure 3a and the contents of each cell array.

% create cell array of grocery items and quantities
groceryData1 = {'apple',4, 'orange',3, 'banana',2, 'pear',8};
groceryData2 = {{'apple',4},{'orange',3},{'banana',2},{'pear', 8}};

Figure 2a, MATLAB Program to Create groceryData Cell Arrays

>> disp(groceryData1)
 'apple' [4] 'orange' [3] 'banana' [2] 'pear' [8]

>> disp(groceryData2)
 {1x2 cell} {1x2 cell} {1x2 cell} {1x2 cell}

Figure 2b, groceryData Cell Arrays

>> ca4{1} = {'a'};
>> ca4{2} = {'abc', 5, [2, 2, 2]};
>> ca4{3} = {5};
>> ca4
ca4 = {1x1 cell} {1x3 cell} {1x1 cell}

Figure 1e, Cell Array of Cell Arrays

4

Accessing/Extracting Data from Cell Arrays
To extract data from a cell arrays so that it can be operated on, the cell array is indexed (sliced)
similar to arrays. The indexing can be done using parenthesis () which will return the containers
or using braces { } which will return the contents of the container (the data the container
holds). Figure 4 shows an example of indexing to extract the containers and the contents of the
containers. Since most operations involving cell arrays are concerned with processing the data
in the cell array rather than the containers holding the data, indexing should generally be done
using braces.

% create cell array of grocery items and quantities
numberItems = input('Enter number of items: ');
% initialize cell arrays
groceryData1 = cell(1,2*numberItems);
groceryData2 = cell(1,numberItems);
% read in items and quantities and store in cell array
for k = 1:numberItems
 item = input('Enter item: ', 's');
 message = sprintf('Enter quantity of %s: ', item);
 quantity = input(message);

 groceryData1{2*k-1} = item;
 groceryData1{2*k} = quantity;

 container = {item, quantity};
 groceryData2{k} = container;
end

Figure 3a, MATLAB Program to Create groceryData Cell Array

Enter number of items: 3
Enter item: apple
Enter quantity of apple: 4
Enter item: tuna
Enter quantity of tuna: 2
Enter item: pear
Enter quantity of pear: 8
>> disp(groceryData1)
 'apple' [4] 'tuna' [2] 'pear' [8]
>> disp(groceryData2)
 {1x2 cell} {1x2 cell} {1x2 cell}

Figure 3b, groceryData Cell Arrays

5

When assigning cell arrays to variables, either when creating or accessing them, the number of
variables on the left hand side of the assignment must equal the number of cells on the right
hand side. Using parenthesis for indexing is regular indexing which returns a single item (scalar
or array) whereas using braces for indexing works like a function call and can return multiple
results (multiple containers).

In Figure 5a, the indexing operation returns a one by three cell array which is assigned to the
variable v1 (v1 becomes a one by three cell array).

In Figure 5b, the indexing operation returns a single cell array of size one by three. Assigning
the single cell array to three variables, results in a syntax error.

>> ca = {1, 'a', 'abcde', [1 2 3]};
>> ca(1)
ans = [1]
>> ca(2)
ans = 'a'
>> ca(3)
ans = 'abcde'
>> ca(4)
ans = [1x3 double]

>> ca{1}
ans = 1
>> ca{2}
ans = a
>> ca{3}
ans = abcde
>> ca{4}
ans = 1 2 3

Figure 4, Indexing Cell Arrays

>> ca = {1, 'a', 'abcde', [1 2 3]};
>> v1 = ca(1:1:3)
v1 = [1] 'a' 'abcde'

Figure 5a, Assignment of Result of Indexing Cell Array

>> [v1 v2 v3] = ca(1:1:3)
??? Indexing cannot yield multiple results.

Figure 5b, Improper Assignment of Result of Indexing Cell Array

6

In Figure 5c, the indexing operation returns three results (a number, a character, and a string)
which are assigned to the corresponding variable in the list of three variables on the left side of
the assignment.

In Figure 5d, the indexing operation returns three results as the previous example, but there is
only one variable on the left side of the assignment. This is not a syntax error, but only the first
of the extracted elements is saved in the variable, the other two are discarded as there is no
variable to store them in.

The general rules for indexing cell arrays are:
• When indexing to extract the contents of the cell array (using braces), have as many

variables on the left side of the assignment as the number of elements extracted.
• When indexing to extract the containers of the cell array (using parentheses), have a single

variable on the left side of the assignment as the result of the indexing results in a single cell
array not multiple separate containers.

Operating on Data in Cell Arrays
Most MATLAB operations cannot be done on data in cell arrays since the type of data in the cell
array may vary. To operate on data in cell arrays: the data in the cell array must be extracted,
operated on, and moved back in the cell array if desired. Indexing, slicing, and iteration can be
done on cell arrays.

The MATLAB program of Figure 6a illustrates the process of extracting data from a cell array
and operating on it. Note that for the second cell array, groceryData2, first the 1 by 2
container is extracted and then the second element of the 1 by 2 container is extracted to get
the quantity of that item. This could be done in one step although the syntax is a bit confusing

Note in Figure 6b, the groceryData2 cell array contains four 1 by 2 cell arrays. An inner cell
array can be extracted by indexing with braces, groceryData2{1}, returning the 1 by 2 cell
array container. This container can then be indexed with braces again to extract one of the data
elements in the container, groceryData2{1}{2}. The first indexing extracts one of the cell
arrays and the second indexing extracts a data element from that cell array.

>> [v1 v2 v3] = ca{1:1:3}
v1 = 1
v2 = a
v3 = abcde

Figure 5c, Proper Assignment of Result of Indexing Cell Array

>> v4 = ca{1:1:3}
v4 = 1

Figure 5d, Improper Assignment of Result of Indexing Cell Array, but Syntactically Legal

7

Last modified Thursday, November 13, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

% create cell array of grocery items and quantities
groceryData1 = {'apple',4,'orange',3,'banana',2,'pear',8};
groceryData2 = {{'apple',4},{'orange',3},{'banana',2}, {'pear',8}};

% extract quantities of groceryData1 into separate array
numberItems1 = length(groceryData1)/2;
quantities1 = zeros(1,numberItems1);
for k = 1:numberItems1
 quantities1(k) = groceryData1{2*k};
end

% extract quantities of groceryData2 into separate array
numberItems2 = length(groceryData2);
quantities2 = zeros(1,numberItems2);
for k = 1:numberItems2
 container = groceryData2{k};
 quantities2(k) = container{2};
end

Figure 6A, MATLAB Program to Extract groceryData Cell Array Data

>> disp(groceryData2)
 {1x2 cell} {1x2 cell} {1x2 cell} {1x2 cell}
>> disp(groceryData2{1})
 'apple' [4]
>> disp(groceryData2{1}{2})
 4

Figure 6B, Extracting Data from Cell Array Containers in a Cell Arrays

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Cells and Cell Arrays
	Creating Cell Arrays
	Organizing Data using Cell Arrays
	Accessing/Extracting Data from Cell Arrays
	Operating on Data in Cell Arrays

